Sympathetic activity and methods to assess sympathetic nerve activity

Paul J. Fadel, PhD

Department of Kinesiology
University of Texas at Arlington
Arlington, Texas

Outline of Presentation

- Sympathetic nervous system-Importance of studying- Sympathetic Overactivity Deleterious consequences beyond increasing blood pressure (BP)
- Assessing sympathetic nerve activity (SNA) in humans (microneurography)
- Obtaining quality <u>muscle</u> SNA recordings Technical Aspects Key Fundamentals
- Sympathetic Vascular Transduction

Sympathetic nervous system

Chronic Sympathetic Overactivity

Sympathetic Efferents Hypertrophy CNS **Apoptosis** Arrhythmias & Sudden Cardiac Death NE Attenuated Reflexes Renin Renal Vascular Resistance NE Na⁺ reabsorption Glomerular function Peripheral Vascular NE Resistance Vascular Hypertrophy Hypertension

Potential pathological consequences of elevated central sympathetic nerve activity

Vascul	lar	eft	ects.
		/./	

VSM cell hypertrophy and proliferation

Medial thickening

Endothelial cell damage

Endothelial dysfunction

Arterial stiffness

↑ Blood pressure variability

† Peripheral vascular resistance

Hypertension

Atherosclerosis

Metabolic effects

Insulin resistance

† Plasma insulin concentration

Dyslipidemia

Cardiac effects

Cardiac myocyte hypertrophy

Left ventricular hypertrophy

↑ Incidence of arrhythmia

Tachycardia

Renal effects

Renal vasoconstriction

Sodium and fluid retention

Glomerulosclerosis

Microalbumineria

RAAS activation

VSM, vascular smooth muscle; RAAS, Renin-angiotensin-aldosterone system.

Sympathetic Overactivity Not Only About High Blood Pressure

High Blood Pressure

Sympathetic Overactivity and Increased Mortality

NE levels above (n=255) or below (n=254) median value of 393 pg/mL in CHF Benedict et al. Circulation 1996

Heightened SNA in Disease

Disease-

Renal Disease, Heart Failure, Hypertension, Obesity, Type 2 Diabetes, Metabolic Syndrome, Sleep Apnea, Chronic Obstructive Pulmonary Disease

Microneurography

Muscle SNA

Sites Used To Obtain SNA Recordings

- 1) Radial Nerve
- 2) Median Nerve
- 3) Tibial Nerve
- 4) Peroneal Nerve at Popliteal Fossa and Fibular Head

Nerve thickness measurements

Mean: $2.4 \pm 0.7 \times 0.7 \pm 0.2$ mm

Range: $1.1-4.2 \times 0.5-1.3 \text{ mm}$

Canella C et al., 2009

Identification of Nerve Location

Palpation: Palpate fibular headanatomically posterior

External Stimulation: Map the peroneal nerve with external stimulation- Typically 0.5 to 4 volts stimulation:

Elicits involuntary twitches and paresthesia

Use stimulating pen electrode to localize and find site that provides largest twitch with lowest voltage.

Inserting Electrodes and Probing for Nerve

1) Probing and Listening for Insertion Discharge

Insert recording electrode and probe using sound only
When hit nerve makes distinct noise (Insertion Discharge)

2) Internal Stimulation
Position by stimulation through electrode

3) Doppler Guided

Inserting Electrodes and Probing for Nerve Con't

- Place ground (reference) electrode 2 3 cm away from main site
- Enter skin at angle using markings and information from external stimulation
- 3) Start timer- Maximal time 60 minutes
- 4) Move electrode forward and then anterior and posterior Use fibular head as key landmark

Optimizing Signal- How it works

Characteristics of Muscle SNA vs. Skin SNA

Muscle SNA

- Narrow Based Bursts
- Pulse synchronous
- Regulated via the arterial baroreceptors
 - Not increased by arousal
- Associated with muscle afferents

Skin SNA

- Broad Based Bursts
- Not Pulse synchronous
- Not regulated by the -arterial baroreceptors
- Highly variable discharge pattern
- Increased by arousal
- Skin afferents

Example of Skin SNA

Difficulties with assessing and analyzing skin SNA

Multiunit SSNA recording is comprised of vasoconstrictor, sudomotor, pilomotor and possibly active vasodilator fibers

Cannot make group comparisons with skin SNA measures

Example of Muscle SNA

Key Fact in Adjusting Electrodes to Maximize Recording Quality

Nerve sites frequently improve spontaneously over time. Need to be patient! Especially in cases with low nerve traffic

Use breath hold to assess and determine quality of location

High Quality MSNA Signal

Low Quality MSNA Signal

Low Baseline Traffic with Reasonable MSNA Site

Medium Quality MSNA Signal but......

Sympathetic recordings: Quantifying multiunit MSNA

1. At rest:

Can ONLY count bursts bursts/100 h.b. or bursts/min

Interobserver variability 8-10 %

2. To Provocation:

In constant electrode site **ONLY**:

Total activity = number of bursts x mean burst height or area

Total MSNA = activity per beat

Burst height depends on distance between electrode tip and active fibers, a factor which varies between sites and cannot be determined. Thus, total activity measures CANNOT be used to compare groups.

Key Points for MSNA at rest: Reproducible Bursting

Intervals of weeks/months

12 years follow up

Implication: The reproducibility allows longitudinal studies to be made (of life style, of disease, of treatment)

Simultaneous recordings shows similar patterns of MSNA

Similar patterns of MSNA obtained in arm and leg

Important MSNA relationships

Summary of Important Points

 Muscle Sympathetic Nerve Activity burst frequency is highly reproducible over time

Similar MSNA bursting patterns when measured in leg and arm

 Resting MSNA related to total body noradrenaline spillover as well as spillover to the kidney and the heart

Sympathetic Vascular Transduction

Sympathetic Vascular Transduction

Spontaneous Sympathetic Transduction to Blood Pressure

Spike Triggered Averaging of Beat-to-Beat Data

BP Response following MSNA bursts:

Magnitude = ~3 mmHg

Latency = \sim 5.5 sec

Wallin & Nerhed, *J Auton Nerv Sys*, 1982

Hypotheses

Leg vascular conductance (LVC) would transiently decrease following MSNA bursts, whereas cardiac cycles without MSNA would exhibit a minimal or no decrease

Beat to Beat Sympathetic Vascular Transduction

11 normotensive healthy young men (25±1 years, 176±2 cm, 79±2 kg)

Spike-triggered averaging of 20 minutes during quiet, awake, supine rest

Fairfax ST et al, *AJP Heart Circ* 304: H759-66, 2013

Beat to Beat Sympathetic Vascular Transduction

Thank You!

Left Ventricular Mass and SNA in Patients with Untreated Essential Hypertension

Subpressor moxonidine treatment reduces glomerulosclerosis

SNX – Subtotal Nephrectomy (75% of right kidney removed to induce hypertension)

Amann K. et al. J Am Soc Nephrol 2000

Potential pathological consequences of elevated central sympathetic nerve activity

Vascul	lar	eft	ects.
		/./	

VSM cell hypertrophy and proliferation

Medial thickening

Endothelial cell damage

Endothelial dysfunction

Arterial stiffness

↑ Blood pressure variability

† Peripheral vascular resistance

Hypertension

Atherosclerosis

Metabolic effects

Insulin resistance

† Plasma insulin concentration

Dyslipidemia

Cardiac effects

Cardiac myocyte hypertrophy

Left ventricular hypertrophy

↑ Incidence of arrhythmia

Tachycardia

Renal effects

Renal vasoconstriction

Sodium and fluid retention

Glomerulosclerosis

Microalbumineria

RAAS activation

VSM, vascular smooth muscle; RAAS, Renin-angiotensin-aldosterone system.

Beat to Beat Sympathetic Vascular Transduction

Identification of Nerve Location (con't)

